Optical scatter imaging using digital Fourier microscopy
نویسندگان
چکیده
منابع مشابه
Optical Scatter Imaging using Digital Fourier Microscopy
An approach reported recently by Alexandrov et al. 1 on optical scatter imaging, termed digital Fourier microscopy (DFM), represents an adaptation of digital Fourier holography to selective imaging of biological matter. Holographic mode of recording of the sample optical scatter enables reconstruction of the sample image. Form-factor of the sample constituents provides a basis for discriminatio...
متن کاملOptical scatter imaging: subcellular morphometry in situ with Fourier filtering.
We demonstrate a quantitative optical scatter imaging (OSI) technique, based on Fourier filtering, for detecting alterations in the size of particles with wavelength-scale dimensions. We generate our scatter image by taking the ratio of images collected at high and low numerical aperture in central dark-field microscopy. Such an image spatially encodes the ratio of wide to narrow angle scatter ...
متن کاملOptical Scatter Imaging with a digital micromirror device.
We had developed Optical Scatter Imaging (OSI) as a method which combines light scattering spectroscopy with microscopic imaging to probe local particle size in situ. Using a variable diameter iris as a Fourier spatial filter, the technique consisted of collecting images that encoded the intensity ratio of wide-to-narrow angle scatter at each pixel in the full field of view. In this paper, we r...
متن کاملFourier-domain digital holographic optical coherence imaging of living tissue.
Digital holographic optical coherence imaging is a full-frame coherence-gated imaging approach that uses a CCD camera to record and reconstruct digital holograms from living tissue. Recording digital holograms at the optical Fourier plane has advantages for diffuse targets compared with Fresnel off-axis digital holography. A digital hologram captured at the Fourier plane requires only a 2D fast...
متن کاملSpatially Fourier-encoded photoacoustic microscopy using a digital micromirror device.
We have developed spatially Fourier-encoded photoacoustic (PA) microscopy using a digital micromirror device. The spatial intensity distribution of laser pulses is Fourier-encoded, and a series of such encoded PA measurements allows one to decode the spatial distribution of optical absorption. The throughput and Fellgett advantages were demonstrated by imaging a chromium target. By using 63 spa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics D: Applied Physics
سال: 2005
ISSN: 0022-3727,1361-6463
DOI: 10.1088/0022-3727/38/19/008